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Type 1 diabetes (T1D) is a chronic disorder characterized by immune-mediated
destruction of pancreatic insulin-producing b-cells. The primary treatment for T1D is
multiple daily insulin injections to control blood sugar levels. Cell-free delivery packets with
therapeutic properties, extracellular vesicles (EVs), mainly from stem cells, have recently
gained considerable attention for disease treatments. EVs provide a great potential to treat
T1D ascribed to their regenerative, anti-inflammatory, and immunomodulatory effects.
Here, we summarize the latest EV applications for T1D treatment and highlight
opportunities for further investigation.
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1 INTRODUCTION

Type 1 diabetes (T1D) is caused by immune-mediated destruction of the insulin-producing b-cells
resulting in a life-long insulin dependence (1). T1D can occur at any age but mostly arises already at
a young age (2). The incidence of T1D has increased through the past three decades worldwide (3).

To establish stable glycemic control, patients with T1D need multiple daily insulin (MDI)
injections or continuous insulin infusion through a pump (4). Despite technological advances,
unstable glycemic control in patients continues to be a risk factor for diabetes-related metabolic and
vascular complications (5, 6). Therefore, novel interventions are needed for the T1D treatment.
Protecting and regenerating b-cell mass and improving insulin-producing capacity should be the
primary purposes of any in-development and future T1D treatments.

Surgical islet transplantation and/or whole pancreas transplantation are the only current
treatments for restoring the b-cells (7). Islet transplantation faces a limited source of islet donors
and immune destruction after transplantation, requiring immunosuppression therapy (8, 9).

Ascribed to the autoimmune nature of T1D, immunotherapies aiming at the suppression/regulation
of T cells or proinflammatory cytokines have also been developed over the past three decades (1). These
org April 2022 | Volume 13 | Article 8657821
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treatments remain in active development; however, they have been
only partly successful. Technological shortcomings, the limited
translational success of adapting preclinical rodent studies to
humans, and the ambiguity of the T1D pathogenesis have been
involved in the current limitations of immunotherapies for T1D (5,
10, 11). Stem cell-based therapies that aim to replace or regenerate
destructed b-cell are broadly investigated treatments (7). Although
showing promising results, stem cell-derived b-cells need to be
protected from immune-mediated destruction. One way to
overcome this is by combining replacement therapy with
immunomodulatory treatments (5).

One way to overcome the inflammatory condition and
suppress the immune cells is using extracellular vesicles (EVs).
EVs are therapeutic agents recently introduced as a new
treatment for several autoimmune diseases, especially multiple
sclerosis (MS), rheumatoid arthritis (RA), and T1D, with
considerable immunomodulatory and regenerative effects (12–
17). This review brings together current state-of-the-art advances
in applying EVs as a treatment for T1D.
2 EXTRACELLULAR VESICLES

2.1 Classification and Characterization
Nearly all cells can produce and release endosome-derived vesicles
(30–2000 nm) called EVs (18, 19). EVs are important intercellular
communication mediators and contain lipids, metabolites, DNA,
proteins, and RNA species, such as miRNA, mRNA, tRNAs (20,
21). There are three main subtypes of EVs based on their
mechanism of biogenesis: exosomes (EXOs), microvesicles (MVs),
and apoptotic bodies (19). EXOs range from 30 to 180nm in size
and are characterized by markers including tetraspanins (CD9,
CD63, CD81, TSPAN29, and TSPAN30), ESCRT components,
HSP70, ALIX, flotillin, MFGE8, and TSG101 (18, 19). EXOs
components mainly include ESCRT-related proteins, microRNAs
(miRNAs), messenger RNAs (mRNA) and other non-coding
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and major histocompatibility complex (MHC) molecules (18, 19,
22). EXOs arise from a complex multi-step process in which the
plasma membrane is internalized to form a primary endosome,
followed by intra-luminal vesicles (ILVs) formation within the
endosome. At this stage, specific substrates enter the ILVs via
ESCRTs or ESCRT-independent machines. The primary
endosome is now considered a mature multivesicular body
(MVB), including several ILVs. The MVB attaches to the plasma
membrane and releases ILVs into the extracellular space
called ‘EXOs’.

MVs’ (50 to 1000nm) markers include integrins, selectins,
and CD40 ligand, and their components are mRNA, miRNA,
non-coding RNAs, and cytoplasmic and membrane proteins.
MVs are generated by the outward budding of the plasma
membrane (18, 23) (Figure 1). The apoptotic bodies (500 to
2000nm) are released from apoptotic cells and contain nuclear
fractions and cell organelles (18, 24, 25).

Despite recent advances in the understanding of EV, in several
published articles, the term “exosome” and “microvesicle” have been
used interchangeably due to a lack of a uniform protocol for EV
purification and incomplete knowledge of the EVs characteristics
(18); as differences in the currently known characteristics such as
size, density, and protein markers seem insufficient for a satisfiable
distinction between EXOs and MVs (20, 26).

2.2 Interaction With the Target Cell and
Biological Significance
EVs are naturally present in body fluids, including blood, urine,
saliva, semen, sputum, and milk (21, 27, 28); and are released
from many cells such as stem cells (29), progenitor cells (30),
mesenchymal stromal cells (MSCs) (17), somatic cells like
pancreatic beta cells (31), and many other cells.

EVs are recognized for their unique ability to transport
different intact molecules between cells. Cell-to-cell
communication mediated by EVs requires traveling and
FIGURE 1 | Extracellular vesicles characteristics and biogenesis.
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interacting with the plasma membrane. At the target site, EVs
can act through membrane receptors and activate downstream
intracellular signaling, or they directly fuse with the cell
membrane and release their content into the target cell’s
cytoplasm. EVs also can internalize by clathrin-mediated or
clathrin-independent endocytosis (22, 32).

Several physiological functions have been identified for EVs in
recent decades, as they play essential roles in the innate and acquired
immune systems response (e.g., antigen presentation and activation
of innate antiviral immune responses) (33–35). On the other hand,
adverse roles have also been attributed to EVs when the condition is
pathological, indicating that EVs are involved in developing or
progressing many diseases, including type 1 and 2 diabetes,
neurological diseases, autoimmune diseases, and cancers (e.g.,
primary and metastatic brain tumors, ovarian cancer, breast
cancer, and pancreatic cancer) (15, 36–40).

In the last decades, EVs gained interest as a new treatment
option in several diseases as they mediate intercellular signaling
(20, 41). EV’s content profile and biological activity depend on
their cell of origin and the microenvironment (42). They have
shown great potential in inducing cell proliferation and tissue
repair (43), angiogenesis (31), and improving some cellular
functions (43). EVs have also shown considerable properties in
modulating the immune system mainly by carrying
immunomodulatory effectors, such as transcriptional factors
(e.g., Nanog and Oct4), mRNAs, and cytokines (e.g., TGF-b
and IL-10) (21, 44–46). For these reasons, diverse therapeutic
properties made them popular, especially in drug delivery and
regenerative medicine (41).
3 EVS FOR T1D

The main treatment strategies for T1D are immunotherapies (1)
and cell replacement, including islet transplantation and stem
Frontiers in Immunology | www.frontiersin.org 3
cell differentiation into b-cells as a cell replacement method (7).
As a new opportunity, EVs, with their therapeutic properties, had
emerged (21, 42). EV’s simultaneous regenerative and
immunomodulatory abilities align with new hypotheses about
the T1D nature and the ideal treatments. According to the new
speculations, an ideal treatment for T1D should be able to
recover b-cells while modulating the immune system
(10) (Figure 2).

3.1 Immunomodulatory Effects
T1D is essentially an autoimmune disease in which insulin-
producing b-cells in the pancreas are invaded and destroyed by
the immune system (1); Meanwhile, auto-reactive T cells have
been identified as the primary attackers (47, 48). On the other
hand, regulatory T cells have lost their efficiency in creating
peripheral tolerance to b-cells (49). In T1D, EVs demonstrated
immunomodulatory effects, mainly through suppressing reactive
T cells and inducing regulatory T cells (Table 1).

3.1.1 Suppressing Auto-Reactive Immune Cells
T cells play a crucial role in the immune attacks on b-cells (47).
CD4+ T cells are activated by b-cell antigens, which are presented
by antigen-presenting cells (APCs), including macrophages and
dendritic cells (DCs); these activated CD4+ T cells by producing
cytokines, attract and induce the proliferation of CD8+ T and B
cells in the islet, leading to insulitis (48). Insulitis indicates an
immune attack on b-cells and is defined by the infiltration of
inflammatory cells around and within the islets (52). Suppressing
auto-reactive CD4+ T cells delays T1D onset/progression (1).

EVs have shown suppressive effects on auto-reactive T cells in
T1D animal models, while MSC-derived EVs were shown to
suppress the proliferation/activation of APCs, Th1 and Th17
cells in vitro and delayed T1D onset in mice (16). In line with
these findings, releasing inflammatory cytokines by reactive
CD4+ T cells including IFN‐g, IL-12, TNF-a, IL-6, and IL-17
FIGURE 2 | Extracellular vesicle application in type 1 diabetes; EVs modulate inflammation while recovering b-cells. EVs, extracellular vesicles; BM, Bone marrow;
iPSCs, induced pluripotent stem cells; Th, T helper cell; Treg, regulatory T cell.
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TABLE 1 | Immunomodulatory effects of extracellular vesicle application in type 1 diabetes.
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reduced insulitis and T cell infiltration, reduced
APC and T cell activation, reduced Th1/Th17
population, reduced inflammatory cytokines
(IL-17, IL-6, IFN-g, TNF-a and IL-12) levels

(16)

NA Reduced number of pro-inflammatory
macrophages in islets, increased islet
angiogenesis

(31)

NA Increased Treg numbers in spleen, increased
immunomodulatory cytokines (IL-4, IL-10 and
TGF-b) levels, reduced inflammatory cytokines
(IFN-g and IL-17) levels

(50)

Downregulation
of Fas, miR-375
and miR-155
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IL-10 and IL-6
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DCs

Induced immature IL-10-secreting phenotype
of DCs, increased IL-10 and IL-6 levels,
increased Treg numbers, reduced Th17
numbers

(17)

NA Induced differentiation of monocytes into anti-
inflammatory M2 macrophages (29)
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were reduced following EV treatment. The authors suggested
that MSC-EVs might induce IL-10-secreting regulatory DCs;
thereby, DCs subsequently suppressed Th1 and Th17 cells
development (16). In another study, DCs preconditioned with
MSC-derived EXOs represented an immature IL-10-secreting
phenotype associated with reduced co-stimulatory molecules
expression, which could reduce Th17 numbers in the islet-
antigen-stimulated T cells in vitro (17). Therefore, Th17 cells
are believed to contribute to the pathogenesis of autoimmune
diseases; however, their role in T1D is not fully understood (53)

In addition to T cells, macrophages also infiltrate the
pancreatic islets in the early stages of T1D and induce an
inflammatory response resulting in insulitis and b-cell death
(48). EXOs isolated from b-cells showed lower proinflammatory
macrophage infiltration into the pancreatic islets in diabetic mice
(31). In a study by Hu et al., EXOs isolated from cord blood-
derived stem cells converted patients’ blood monocytes into M2
macrophages with anti-inflammatory properties in vitro. M2
macrophages, called “educated” immune cells, can be re-
injected into the T1D patients’ blood, thus modulating the
immune system (29).

3.1.2 Inducing Regulatory T Cells
Regulatory T cells (Tregs) are essential in establishing peripheral
immune tolerance (54). Defective Treg-mediated immune
regulation has been shown in numerous autoimmune disorders,
including T1D (55). At least a subset of individuals with T1D have
reduced FOXP3+ Treg frequency and function (49). Tregs from
patients with T1D showed to be less potent to regulate the
proliferation of autologous effector T cells (56) and produce
mainly proinflammatory cytokines (57). However, T1D patients
are believed to benefit from reinforcement of Tregs, even individuals
who do not have reduced Treg frequency or function (49).
Accordingly, EVs have demonstrated the potential to induce
Tregs. EXOs derived from adipose-MSCs have been shown to
restrain the autoimmune response of the streptozotocin (STZ)-
induced T1D mouse model (50). These EXOs led to an increase in
the splenic production of anti‐inflammatory cytokines TGF‐b, IL‐4,
and IL‐10, with a decrease in the production of proinflammatory
cytokines IL‐17 and IFN‐g, as the results of an increased splenic
CD25+FOXP3+ Treg population (50). Wen et al. suggested that
EXOs isolated from human bone marrow stromal cells (hBMSC)
and peripheral blood mononuclear cell (PBMC) co-culture could
suppress immune reaction by amplifying Treg function in a
humanized NOD SCID gamma (NSG) mouse model (51). In
another study, T1D patients-isolated DCs preconditioned with
MSC-derived EXOs induced a higher proportion of FOXP3+

Tregs in the islet-antigen-stimulated T cell population in vitro.
These T cells also exerted an increased secretion of anti-
inflammatory IL-10, TGF-b, and IL-6 molecules (17).

3.2 Inducing b-Cell Regeneration
Pancreatic b-cells regeneration is a promising strategy for T1D
treatment. In this regard, EVs have shown considerable potential in
inducing b-cell proliferation (Table 2). EXOs isolated from MSCs
have been shown to induce islet cell regeneration and insulin
secretion through upregulating pancreatic and duodenal
Frontiers in Immunology | www.frontiersin.org 5
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homeobox1 (pdx1), TGF-b, and smad1/2 (12). Pdx1 is involved in
b-cell differentiation, survival, and functional maintenance (62), and
TGF-b is also responsible for cell proliferation and differentiation
(63). Moreover, MSC-EXOs demonstrated higher regenerative
potential when compared with parental MSCs (58). EXOs derived
from menstrual blood-derived MSCs have also shown similar
results in inducing b-cell regeneration through pdx1 upregulation
in T1D rats (59). Healthy adipocyte-derived EVs also improved the
survival, proliferation, and insulin-producing function of pancreatic
b-cells (43). In a study by Tsukita et al., bone marrow
transplantation promoted b-cell regeneration in T1D mice by
releasing EXOs containing miR-106b-5p and miR-222-3p into the
bloodstream. These microRNAs encapsulated in EXOs reached b-
cells and downregulated p21Cip1 and p27Kip1, which are negative
controllers of b-cell regeneration after injury, inducing b-cell
proliferation (60).

Pathfinder cells (PC) (pancreas-derived progenitor cells) were
recently introduced as a novel cell type that can be isolated from
the adult rat pancreatic ducts and induced to form islet-like
structures in vitro (64). PCs have been shown to stimulate
regeneration of damaged mice pancreatic islets (65). In order
to extend the latter study, McGuinness et al. suggested that PC-
derived MVs (not EXOs) induce islet regeneration and restore
their function in the STZ diabetic mouse model. The results of
the PC-MVs were similar to the PC treatment (61), which
demonstrated that PCs in the Stevenson et al. study (65)
possibly acted through releasing MVs.

3.3 Improving Islet
Transplantation Outcome
Destruction of transplanted islets due to immune rejection and
poor vascularity limits the broad application of islet
transplantation in T1D patients (66). Therefore, improving
transplanted islet cell survival by protecting these islets against
the immune system and enhancing angiogenesis within and/or
around them seem beneficial and essential. In this context, EVs
showed promising effects (Table 3).

hBMSCs derived EXOs suppressed transplanted islet
apoptosis and improved their function in a humanized NSG
mouse model by co-delivering short interfering RNA (siRNA)
against Fas receptor and miR-375 inhibitor (51). Evidence
suggests that Fas activity and miR-375 impair islet cell
proliferation and insulin secretion (73–75).

Foreign body response (FBR) is an inflammatory reaction to the
transplantation, leading to dense fibrotic tissue forming around the
microcapsules-containing islets, restricting the survival and insulin-
producing function of islets in rodent models (76, 77).
Xenotransplantation of rat islets encapsulated in hybrid alginate
microcapsule-loaded by EXOs derived from human umbilical cord
MSCs (UC-MSCs) attenuated the immune-based FBR and islet-
engulfed fibrosis after transplantation. It increased the survival of
transplanted islets in an immunocompetent mouse model of T1D.
These EXOs suppressed inflammatory macrophage and T cell
activation/proliferation followed by a reduced production of
inflammatory cytokines, including MCP-1, IL-2, IL-6, IL-12, IL-
22, and TNF-a (68).
Frontiers in Immunology | www.frontiersin.org 6
Transplanted islets often experience hypoxia due to poor
vascularity (78). Hypoxia causes b-cells death and plays a
crucial role in destroying the transplanted islets (79). EXOs
derived from human UC-MSCs have been demonstrated to
improve b-cell survival under a hypoxic condition by
delivering miR-21, resulting in reduced endoplasmic reticulum
(ER) stress and p38 MAPK suppression (70). As ER stress
activates p38-dependent apoptosis (80), ER stress reduction
leads to a decrease in b-cell apoptosis (70). EXOs derived from
human UC-MSC were also able to protect the survival and
function of porcine islets from hypoxia by inducing hypoxia-
inducible factor 1a (HIF-1a) expression (71). In another similar
study, Keshtkar et al. also observed similar results for UC-MSC-
derived EXOs in improving the survival and function of mouse
islets; but this time, they introduced VEGF as the leading player
in these results. They showed that UC-MSC-derived EXOs
contained VEGF (mRNA and protein) and increased VEGF
expression in islet cells (72). VEGF can enhance the viability
and function of transplanted islets in the early days after
transplantation, and this effect of VEGF is independent of
neovascularization since neovascularization in transplanted
islets occurs days to weeks later (81–83).

EVs also demonstrated potential in improving islet
revascularization after transplantation. MVs derived from
endothelial progenitor cells (EPCs) induced angiogenic behavior
in islet endothelium in vitro and enhanced vascularization of
transplanted islets in severe combined immunodeficient (SCID)
mice. This proangiogenic effect was acquired by delivering miR-126
and miR-296 (known as proangiogenic microRNAs) and activating
the PI3K-Akt and eNOS signaling pathways further. Indeed, EPC-
derived MVs improved insulin secretion and survival of the
transplanted islets (30). Moreover, MVs isolated from the b-cell
line preserved islet cells ’ function by inducing islet
neovascularization in streptozotocin-diabetic mice (31).

Another problem in islet transplantation is limited sources of
functional islets for transplantation. Therefore, several studies
have developed alternative insulin-producing cells by inducing
differentiation of stem/progenitor cells (84). In this regard,
applying EV-mimetic nanovesicles (EVMNs) derived from a
pancreatic b-cell line to a subcutaneous matrigel platform
containing bone marrow cells in diabetic NSG mice induced
differentiation of islet-like clusters of insulin-producing cells with
capillary networks from bone marrow cells. These islet-like
insulin-producing cells could control the blood glucose levels
over 60 days (69).

Bai et al. used b cell-derived EVs to induce b-cell
differentiation from induced pluripotent stem cells (iPSCs) and
suggested the critical role of miR-212/132 (encapsulated in these
EVs) in this process, which inhibited FBW7 to reinstate
neurogenin 3 (NGN3) expression. In the following, NGN3 is
bound to PDX1 to induce endogenous miR-212/132 expression
resulting in the insulin-producing function of b-cells (67). NGN3
is a transcription factor involved in pancreas development (85,
86), which induces differentiation of islet cell precursors, and
FBW7 is a ubiquitin ligase that has a negative impact on the
NGN3 stability (87).
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TABLE 3 | Extracellular Vesicle application after islet transplantation in type 1 diabetes.

ream
ing

Downstream genes Outcomes Ref

/ NA Induced proliferation and migration in
IECs, increased neoangiogenesis in
transplanted islets and improved islets
viability and function

(30)

Downregulation of
Nanog, oct4 and
FBW4
Upregulation of
FoxA2, PDX1, NGN3,
NKX6.1, NKX2.5 and
insulin

Induced differentiation of iPSCs into b-
cells capable of releasing insulin in
response to glucose, reducing blood
glucose levels in diabetic mice

(67)

Downregulation of G-
CSF, IFN-g, LIF, kc,
MIP-2, IL-6, VEGF

Reduced FBR (inflammation and
fibrosis) to transplanted islets, improved
transplanted islets viability and

(68)

Upregulation of
FoxA2, PDX1, MafA
and insulin

Induced BM cells differentiation into
functional insulin-producing b-cells and
controlled blood glucose levels in
diabetic

(69)

p38 Downregulation of ER
stress-related
proteins elF-2a,
CHOP, GRP78,
GRP94

Reduced hypoxia-mediated apoptosis
of b-cells, reduced ER-stress, increased
islet survival after transplantation

(70)

Upregulation of HIF-
1a, VEGF and PDH2

Reduced hypoxia-mediated cell death
and dysfunction of b-cells (71)

Upregulation of VEGF
and Bcl-2
Downregulation of
BAD and BAX

Reduced hypoxia-mediated cell death
and dysfunction of b-cells (72)

s, islet endothelial cell line; SC, subcutaneous; iPSCs, induced pluripotent stem cells;
bone marrow; EMNVs, extracellular-mimetic nanovesicles; APCs, antigen presenting
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Ev
source

Ev
concentration

Ev isolation
method

Control Experimental
model

Administration
route (in vivo)

Assay
duration
(in vivo)

Functional
cargo

Downst
signa

EPCs 10 µg/ml MVs UC Vehicle, MVs
pretreated
with RNase

In vivo (SCID mice)
In vitro (human islets,
human IECs)

Loaded by a
matrigel (SC
implantation)

7 days miR-126
and miR-
296

PI3K/Ak
eNOS
activatio

b-cells 15 µg/ml Size exclusion
chromatography

PBS In vivo (SCID mice for
iPSCs-derived b-cells
transplantation)
In vitro (iPSCs)

NA 28 days miR-212
and miR-
132

NA

UC-
MSCs

In vivo
(7.05×1010 ±
3.69×1010

exosomes in
1 ml PBS)
In vitro (200 µg/
ml)

UC Non-
encapsulated
exosomes

In vivo (single
injection of 180 mg/
Kg STZ-induced
diabetic C57BL/6J
mice)
In vitro (PBMCs,
activated RAW264.7
macrophages,
splenocytes)

Loaded by
hybrid Alginate
microcapsule

167 days NA NF-kB
inhibition

b-cells In vivo (10 µg/
each injection)
In vitro (1 µg
protein of
EMNVs)

UC NI3H3T3
cells- EMNVs,
PBS

In Vivo (single
injection of 140 mg/
kg STZ-induced
diabetic NSG mice)
In vitro (BM cells)

Loaded by
matrigel
containing BM
cells (SC
implantation)

60 days NA NA

hUC-
MSC

50 µg/ml UC NA In vitro (b-cells under
hypoxic condition)

NA NA miR-21 Inhibiting
MAPK
pathway

hUC-
MSC

0.5, 10 and 20
µg/ml

UC Exosome-free
conditioned
media

In vitro (porcine islets
under hypoxic
condition)

NA NA NA NA

hUC-
MSC

40 µg/ml UC Exosome-free
conditioned
media, MSCs

In vitro (mouse islets
under hypoxic
condition)

NA NA VEGFA
(mRNA and
protein)

PI3K

EPCs, endothelial progenitor cells; MVs, microvesicles; PBS, phosphate buffer saline; T1D, type 1 diabetes; SCID, severe-combined-immunodeficient; IE
UC-MSCs, umbilical cord mesenchymal stem cells; PBMCs, peripheral blood mononuclear cells; non-obese diabetic; FBR, foreign body response; BM
cells; STZ, streptozotocin; ER, endoplasmic reticulum; hUC, human umbilical cord; GRP, glucose-regulated protein; UC, ultracentrifugation.
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4 FUTURE CONSIDERATIONS

While it is widely believed that T1D is caused by immune system
dysregulation and autoimmunity, another hypothesis has been
put forward stating that the pathogenesis of T1D is triggered via
b-cell itself and consequently causes an unregulated autoimmune
response (10), a phenomenon entitled “un-masked b-cell” (5).
This might partially explain why immunotherapies alone are not
satisfactory. One possible cause of the “un-masked b-cell” is b-
cell stress. Stressed b-cells through HLA-I and chemokine
CXCL10 secretion hyper-expression attract leukocytes to the
islet and precede insulitis. Therefore, reducing this cellular
stress in b-cells may effectively mitigate this phenomenon (10,
88). As mentioned, EVs can efficiently reduce b-cell stress (70).
The “un-masked b-cell” hypothesis supports therapies that help
b-cell recovery/regeneration while modulating the immune
system. Since immune system dysregulation is thought to
result from an initial b-cells misbehave; thus, the consequent
autoimmunity cannot be resolved before b-cell recovery (10). In
this regard, EV therapy suggests both effects.

Accordingly, one practical approach for T1D would be
inducing selective immune tolerance to b-cell autoantigens
(10). Nanoparticles and microparticles have been used as
delivery packets for autoantigens such as proinsulin or GAD65
to induce a tolerogenic phenotype in DCs, characterized by the
reduced ability of DCs to activate inflammatory auto-reactive T
cells resulting in increased differentiation of FOXP3+ Treg cells
(89). In this regard, EV, as a drug delivery tool (18), can also
induce immune tolerance in DCs via delivering b-cell
autoantigens. Indeed, MSC-derived EVs were shown to induce
a tolerogenic phenotype in DCs resulting in anti-islet T cells
reduction, although not by b-cell autoantigen transfer (16, 17).

Although knowledge on EV therapy for T1D is not yet leading
to a conclusive outcome, based on the studies we reviewed here,
the most prominent cell sources for EV isolation for therapeutic
applications in T1D include BMSCs, b-cells, and UC-MSCs.
When it comes to inducing proliferation and improving the
insulin production/secretion function of b-cells, BMSCs-derived
EVs showed considerable potency (12, 58, 60). Moreover, when it
comes to inducing differentiation of b-cells from pluripotent
cells, b-cells-derived EVs are the most used (67, 69). EVs derived
from UC-MSCs were also reported to protect b-cells after
transplantation with high efficiency (70–72).

However, interpretation of the results of current studies
should be made with care; since most studies did not
adequately address the potential effects associated with EVs co-
isolates (22); therefore, it is possible that some of the obtained
results were affected or caused by the co-isolates. In addition,
there are still many other considerations associated with EV
isolation, evaluation, and functional assays, which are not
adequately addressed in most studies. EV isolation and
concentration methods, including ultracentrifugation,
ultrafiltration, density gradients, precipitation, size exclusion
chromatography, and immuno-isolation, cannot effectively
isolate various EV subtypes (including EXOs and MVs) and
are partially successful in specificity to EV isolation (6, 22). In
Frontiers in Immunology | www.frontiersin.org 8
addition, there is still no standard way to evaluate the stability
(90) and functionality of these isolated EVs, so it is not clear how
many EVs are ultimately involved in the reported results.

Clinical application of EVs for T1D has been limited so far.
This could be partially because much preparation is needed to
bring EV therapy into the clinical practice; upgrading and
standardizing EV isolation/purification methods, obtaining the
most efficient dose and the number of EV injections, producing
EV on a large scale, and ensuring EV safety are some of the most
prominent issues that must be addressed before the entrance of
EV to the clinics (6). To study the effect of EV therapy on b-cell
mass and glycemic control, one study at phase 1 was conducted
in 2014, where cord blood MSC-derived EVs were used to treat
twenty T1D patients (NCT02138331). However, this study seems
never to be completed, and the data is not published. This is the
only clinical trial performed in T1D using EVs to the best of our
knowledge. Obviously, more clinical trials are needed to evaluate
EV effectiveness for T1D.
5 CONCLUSION

Here we reviewed the studies that used EVs for T1D treatment in
pre-clinical settings and further highlighted the lack of clinical
application knowledge in the field. As an effective treatment for
T1D, EVs are thought to regulate the immune system at innate
and adaptive levels, possibly by inducing tolerance in DCs to b-
cell autoantigens. Based on the recent speculation about the
pathogenesis of T1D, which emphasizes the b-cell as a key player
in initiating autoimmunity, EV therapy could continue to
present itself as an effective and scalable treatment option. It
was “postulated” that EVs can reduce cellular stress in b-cells
and, therefore, reduce the immune system attack. By inducing
proliferation and regeneration in b-cells, EVs also restore
destructed islet mass. Moreover, they can increase the survival
rate of transplanted islets by diminishing immune rejection and
by enhancing angiogenesis.

In a nutshell, studies reviewed here have provided excellent
guidelines to use EVs features to design specific clinical trials that
utterly could generate an alternative to standard treatment.
However, EVs continue to present some practical challenges
for their use as a clinical-grade therapy, which must be addressed
in the future.
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