Sampling Generalities

Dr. Mansour Rezaei

Prof. of Biostatistics

Kermanshah University of Medical Sciences (KUMS)

Introduction

- You want to determine a parameter.
- Should you take the measurement from every individual in the population?
- Is it feasible to approach each individual in the area to get the information?

More practical to do sampling

Results from the sample will represent the data of the population of interest.

"How do I determine the sample size that I need???"

Why must life be so complicated?

- "Why can't I just take 6 of my best friends to be the sample?"
- 1- easier,
- 2- cheaper,
- 3- good bonding time,
- 4-more co-operative ...
- "Other studies using very few subjects have been published, why can't I do the same?"

We need to have an adequate sample size to ensure the study results can represent our study population.

- Sample size calculation must correspond to the study objectives.
- Different study objectives may require different calculations.
- Calculate the sample size required for all the main objectives & select the largest affordable size.

Must also consider available resources

We will cover:

Sample size calculation based on estimation (confidence interval)

- used when we want to estimate the population parameter (e.g. mean BMI)
- Estimate by giving lower and upper limits (i.e. 2 values "confidence interval").
- Confidence interval (CI): an interval within the true population parameter is likely to fall.

- However, how confident are we that the interval really contains the true value of the population parameter?
- Impossible to be 100% confident.
- How about being:
 - 90% confident?
 - 95% confident?
 - 99% confident?

Normally researchers choose 95% confidence level

Sample size calculation for single mean (numerical variable)

Estimation for single mean (numerical variable)

- Objective 1: To determine the mean BMI (kg/m²) of females aged 20-30 years living in Kermanshah.
- We want to be confident that the estimation (CI) is as close as possible to the mean BMI from all females aged 20-30 years living in Kermanshah (i.e. the population of our interest).

Narrow vs wide CI:

- E.g.:
- which will give a more accurate estimation??
- Narrower CI: estimation of the population mean is more accurate, but we'll need a larger sample!
- Small sample size will give a wider CI: estimation is less accurate

$$n = \left(\frac{Z * \sigma}{\Delta}\right)^2$$

Where:

Z = critical value for 95% confidence level is 1.96 (fixed)

 σ = standard deviation: from previous literature, or pilot study

 Δ : (2 x Δ = CI width) you decide based on practicality.

SAMPLE SIZE CALCULATOR FOR ESTIMATING MEAN

* USING RANDOM (NOT CLUSTER) SAMPLING

Level of Confidence = 95%

Standard Deviation = 6.4

Precision = 4

Population Size (N) =

From previous literature / pilot study

Step = 1

You decide

Precision	Sample Size (n)		Suggestion for FPC application	
(d)	No FPC	With FPC	Suggestion for FFC application	
± 4.00	10		◄ Infinite population is assumed.	
± 3.00	18		◄ Infinite population is assumed.	
± 2.00	40		◄ Infinite population is assumed.	
± 1.00	158		◄ Infinite population is assumed.	

List of suggested sample sizes, select the one most practical

How to report the sample size determination in the 'methods' section?

For objective 1 (to determine the mean BMI (kg/m²) of females aged 20-30 years living in Kermanshah), at an estimated SD of 6.4 kg/m² (reference?) and precision of 2.0 kg/m², we need 40 subjects (determined using Sample Size Calculator for Prevalence Studies, Naing et. al., 2006). With the anticipation of 20% attrition rate, we will recruit 48 subjects for this study.

Attrition: non-response, drop-outs (cohort), missing data

Sample size calculation for single proportion (categorical variable)

• Objective 2: To determine the proportion of females aged 20-30 years living in Kermanshah who are overweight (BMI \geq 25 kg/m²).

- E.g.:
- Same concept as before,
 - large sample size will give narrower CI (more accurate estimation)
 - Small sample size will give wider CI (less accurate estimation)

Sample size formula for single proportion:

$$n = \left(\frac{Z}{\Delta}\right)^2 * P(1-P)$$

where:

n = sample size

P = expected proportion (from previous literature / pilot study)

 Δ = precision (remember, 2 x Δ = CI width) Zvalue = 1.96 for 95% CI (fixed)

SAMPLE SIZE CALCULATOR FOR PREVALENCE STUDIES

* USING RANDOM (NOT CLUSTER) SAMPLING

	Level of Confidence = 95%			
	Expected P = 0.2	* Sugges	sted precision (d) is 0.05.	
	Population Size (N) =	\rightarrow	0.2 = 20%	
Sample Size Table			From previous literature / pilo	t stuc

	Cample dize Table						
	Precision	Sample Size	e (n)	Suggestion for FPC application	Assumption		
	(d)	No FPC With FPC		Suggestion for FFC application	(Normality)		
	± 0.01	6147		◄ Infinite population is assumed.	OK		
	± 0.02	1537		◄ Infinite population is assumed.	OK		
	± 0.03	683		◄ Infinite population is assumed.	OK		
	± 0.04	385		◄ Infinite population is assumed.	OK		
H	± 0.05	246		◄ Infinite population is assumed.	OK		
	± 0.06	171		◄ Infinite population is assumed.	OK		
	± 0.07	126		◄ Infinite population is assumed.	OK		
	± 0.08	97		◄ Infinite population is assumed.	OK		
	± 0.09	76		◄ Infinite population is assumed.	OK		
	± 0.10	62		◄ Infinite population is assumed.	ОК		
	± 0.11	51		◄ Infinite population is assumed.	ОК		
	± 0.12	43		◄ Infinite population is assumed.	OK		
	± 0.13	37		◄ Infinite population is assumed.	OK		
	± 0.14	32		◄ Infinite population is assumed.	ок		
				List of suggested sample sizes			

How to report the sample size determination in the 'methods' section?

• For objective 2 [to determine the proportion of females aged 20-30 years living in Kermanshah who are overweight (BMI ≥ 25 kg/m²)], at an estimated proportion of 20% (reference?) and precision of 5%, we will need 246 subjects (determined using Sample Size Calculator for Prevalence Studies, Naing et. al., 2006). Anticipating 20% attrition rate, we will recruit 300 subjects for this study.

Sample size calculation for comparing groups – hypothesis testing

Some sample size formulae (don't memorise!)

Comparing 2 independent means (independent t test) $n = \frac{2\sigma^2}{\Lambda^2} (z_{\alpha/2} + z_{\beta})^2$

Comparing 2 dependent means (paired t test)

$$n = \left(\frac{\left(z_{\alpha} + z_{\beta}\right)\sigma_{d}}{\Delta}\right)^{2}$$

Comparing 2 proportions (Chi-square test) $p_1(1-p_1) + p_2(1-p_2) + p_3(1-p_3) + p_4(1-p_4) + p_4(1-p_4) + p_5(1-p_4) + p_5(1-p_4) + p_6(1-p_4) +$

$$n = \frac{p_1(1-p_1) + p_2(1-p_2)}{(p_1 - p_2)^2} (z_\alpha + z_\beta)^2$$

Using PS software

- Comparing means
- Comparing proportions

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize

E.g. we want to compare between 2 means: is there a significant difference between:

the mean BMI of females aged 20-30 years living in Kermanshah

and

the mean BMI of females aged 20-30 years living in Kurdestan

(Mean BMI from 2 independent/separate groups, - researchers will use independent *t*-test analysis later)

- Information needed by PS sample size calculator for comparing means:
 - i. a (alpha): margin of error. Normally we allow 5% (0.05).
 - ii. power of the study: power to detect the true difference between the groups. Normally set at 80% (0.8)
 - iv. δ (detectable difference) : the smallest difference that would be statistically significant when comparing different groups
 - v. m (ratio): ratio of no. subjects between groups. Ideally '1' to indicate 1:1

How to report?

We used PS software (Dupont & Plummer, 1997) to calculate the sample size based on comparing 2 means. To detect the difference of 1 unit (BMI kg/m²) with 80% power and alpha 0.05, we need 291 subjects in each study group (SD was estimated as 4.3 kg/m², source?). Anticipating a 20% attrition rate, we will recruit 350 subjects in each group.

Reference:

Dupont WD and Plummer WD: PS power and sample size program available for free on the Internet. Controlled Clin Trials, 1997; 18:274.

http://www.mc.vanderbilt.edu/prevmed/ps.htm

Using PS software

Comparing 2 means- paired groups

Researchers want to compare BMI (kg/m²) of females aged 20-30 years living in Kermanshah before and after health intervention (i.e. 2 paired/ same groups).

This means that researchers need to use paired *t*-test.

How to report?

We used PS software (Dupont & Plummer, 1997) to calculate the sample size based on comparing 2 means. To detect the difference of 1 unit (BMI kg/m²) with 80% power and alpha 0.05, we need 147 subjects (SD was estimated as 4.3 kg/m², *source?*). Anticipating a 20% attrition rate, we will recruit 180 subjects in each group.

Reference:

Dupont WD and Plummer WD: PS power and sample size program available for free on the Internet. Controlled Clin Trials, 1997; 18:274.

http://www.mc.vanderbilt.edu/prevmed/ps.htm

Using PS software

Comparing 2 proportions

Researchers want to determine if there is any difference between:

the prevalence of females aged 20-30 years who are overweight (BMI ≥ 25 kg/m²) living in Kermanshah

and

the prevalence of females aged 20-30 years who are overweight (BMI ≥ 25 kg/m²) living in Kurdestan

- Information needed by PS sample size calculator for comparing proportions:
 - i. a (alpha): margin of error. Normally we allow 5% (0.05).
 - ii. power of the study: power to detect the true difference between the groups. Normally set at 80% (0.8)
 - iv. p_0 : estimated proportion in population 1— estimated from the results from previous literature / pilot study
 - v. p_1 : estimated proportion in population 2 you decide. Small gap between p_0 & p_1 requires large sample size. Must consider available resources and adjust accordingly.
 - vi. m (ratio): ratio of no. subjects between groups. Ideally '1' to indicate 1:1

How to report?

We used PS software (Dupont & Plummer, 1997) to calculate the sample size based on comparing 2 proportions.

To detect the difference of 10% in proportion (P_1 - P_0) with 80% power and alpha 0.05, we need 340 subjects in each study group. (P_0 - the prevalence of females aged 20-30 years who are overweight in Bertam Indah was estimated at 37%, source?). Anticipating a 20% attrition rate, we will recruit 410 subjects in each group.

Reference:

Dupont WD and Plummer WD: PS power and sample size program available for free on the Internet. Controlled Clin Trials,1997;18:274.

http://www.mc.vanderbilt.edu/prevmed/ps.htm

Acknowledgement

- Some of the materials in this lecture were adapted from the slides of Assoc. Prof. Dr Lin Naing @ Mohd Ayub Saddiq (with permission).
- Thanks for my dear daughter Khansa